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Abstract

Obtaining compact and discriminative features is one of the major challenges in
many of the real-world image classification tasks such as face verification and ob-
ject recognition. One possible approach is to represent input image on the basis
of high-level features that carry semantic meaning which humans can understand.
In this paper, a model coined deep attribute network (DAN) is proposed to ad-
dress this issue. For an input image, the model outputs the attributes of the input
image without performing any classification. The efficacy of the proposed model
is evaluated on unconstrained face verification and real-world object recognition
tasks using the LFW and the a-PASCAL datasets. We demonstrate the potential
of deep learning for attribute-based classification by showing comparable results
with existing state-of-the-art results. Once properly trained, the DAN is fast and
does away with calculating low-level features which are maybe unreliable and
computationally expensive.

1 Introduction

Many computer vision tasks such as image segmentation, object recognition, and face verification
are conducted on the basis of image features providing shape, color, texture information of the im-
age. These are generally low-level visual features that carry limited semantic meaning, and the
extraction of certain low-level features such as scale-invariant feature transform (SIFT) [1], his-
togram of oriented gradients (HOG) [2], local binary patterns (LBP) [3] by means of signal process-
ing is considered computationally expensive, and they are unreliable under various circumstances.
To achieve high performance, various ad hoc preprocessing prior to the actual feature extraction is
required. Furthermore, concatenation and combination of different low-level features enlarge the
dimension of the input feature space. As an alternative, recent studies have shown that the conver-
sion from low-level features to high-level features (henceforth referred to as attributes) that provide
semantic meaning to which humans can relate has the potential to enhance the classification perfor-
mance of particular computer vision tasks and can be used to describe objects unseen in the training
examples [4, 5].

It was shown that humans perform almost perfectly in extremely ambiguous classification task such
as unconstrained face verification [4]. Although there have been great advances recently in the
understanding of the human visual cortex, humans’ classification ability is hard to imitate since the
human brain is still considered as a recondite area. Instead, we focus on the human descriptive
ability, which is closely connected to the classification ability. For instance, one can instinctively
understand that the following words, “an animal with yellow fur, a long neck, four legs, and brown
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spots,” are describing a giraffe. Each word is an attribute that represents a describable visual aspect
of the giraffe, and the combination of attributes can distinguish the giraffe from other animals. Based
on this paradigm, a two-step framework can be considered in classification: 1) obtain an attribute
descriptor (binary state or real-valued score) from an image and 2) feed it to a final classifier to
perform the classification.

As an attribute-based solution, the absence or presence of various attributes in the form of a binary
attribute descriptor is determined using a number of attribute classifiers. Kumar et al. obtained
attribute score vectors from face images using attribute classifiers based on support vector machines
(SVMs) on a combination of low-level features [4]. In the multi-object classification tasks, Lampert
et al. utilized between-class attributes to overcome object classification in the case of training and
test classes are disjoint [5]. Farhadi et al. applied both semantic and discriminative attributes to
classify general objects [6].

In this paper, a supervised deep learning framework is considered to capture human-specified at-
tributes to be used either for classification or verification. The hierarchical structure of a deep belief
network (DBN) is trained to transform an input image into a form that is understandable by hu-
man without requiring the extraction of low-level features. It is known that human visual cortex
exploits hierarchical feature representations of input images. For instance, the primary visual cortex
V1 learns localized and oriented edge filters, and the higher-layer V2 learns linear combinations of
edge filters learned in V1. Hierarchical organization in visual cortex enables the human brain to un-
derstand the scenes. In general, DBNs are pre-trained in an unsupervised manner, and the activations
of the topmost layer are abstract and compact binary descriptor which is frequently used as input of
classifiers such as SVMs. DBNs have shown promising performance in many applications such as
phone recognition [7], object classification [8], and face verification [9]. However, the binary coded
descriptors provided by DBNs are not understandable by humans. If one could train the DBN in a
supervised manner to output attribute descriptor which can be interpreted by humans, it would make
for an interesting study. We are motivated by the ability of the DBN that transforms the input images
into abstract representations, and this nature fits well with our framework: modeling the human vi-
sual cortex to obtain the human description (attributes). The advantage of the proposed DBN-based
model is that it is fast once trained and does not require the extraction of low-level features from
unknown images.

The rest of this paper is organized as follows. We first present the background of the DBN in Section
2. The details of the proposed model are described in Section 3. Experiments on face and object
datasets are reported in Section 4, followed by a conclusion in Section 5.

2 Deep belief networks

The DBN is composed of many hidden layers, the activations of the previous layer are the inputs of
the subsequent layer, and each layer tends to learn hierarchies of feature representation of the input
data. The hierarchical structure of the DBN encourages the model to gain representational power
that can represent highly non-linear and highly varying functions [10]. However, it was known
difficult to train directed belief networks with deep structure due to the well-known phenomenon of
explaining away before Hinton et al. proposed an efficient algorithm applying restricted Boltzmann
machines (RBMs) [11] to train a DBN in a greedy layer-wise manner [12]. After greedy layer-
wise training, the resulting model has bipartite connections at the top two layers that form an RBM,
and the remaining layers are directly connected [13]. The following sections will briefly review the
background information of the DBN and its building block, the RBM, before introducing our model.

2.1 Restricted Boltzmann machines and Gaussian units

The RBM is an undirected bipartite graph with a visible layer v, which represents the input data, is
connected to a hidden layer h, which captures the underlying structures of the v using symmetric
weighted connections. The joint distribution of the RBM can be formulated as follows:

P (v,h; θ) =
1

Z(θ)
exp(−E(v,h; θ)), (1)
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where θ = {W, b, c} is the model parameter set of the RBM and Z(θ) is the partition function. E(·)
denotes the energy function and is defined as follows:

E(v,h; θ) = −
V∑
i=1

H∑
j=1

viWijhj −
V∑
i=1

civi −
H∑
j=1

bjhj , (2)

where Wij is the symmetric connection between a visible unit vi and a hidden unit hj , while ci and
bj are biases of each unit respectively. V andH are the number of units in the visible and the hidden
layers.

In general, RBMs use Bernoulli units for both of the visible and the hidden layers. When the input
data are not binary-valued, RBMs reach limitation with modeling real-valued data. Instead of using
general RBMs, we should consider using modified RBMs that replace the Bernoulli units in the
visible layer by linear units with Gaussian noise. Hence, the modified RBMs are called Gaussian-
Bernoulli RBMs [14] and the energy function is defined as follows:

E(v,h; θ) = −
V∑
i=1

(vi − ci)2

2σ2
i

−
V∑
i=1

H∑
j=1

vi
σi
Wijhj −

H∑
j=1

bjhj , (3)

where σi denotes the variance of the ith visible unit. Since there are no intra-layer connections,
units in the hidden layer are conditionally independent given the visible layer, and vice-versa. This
property makes the inference easy. The conditional distributions of Gaussian-Bernoulli RBMs can
be computed efficiently using the following equations:

P (hj = 1|v; θ) = f(
1

σi

V∑
i=1

viWij + bj),

P (vi|h; θ) = N (vi|σi
H∑
j=1

hjWji + ci, σ
2
i ), (4)

where f(·) denotes the sigmoid function and N (·|µ, σ2) is a Gaussian distribution. RBMs are
trained with maximum-likelihood learning (or minimize negative log-likelihood); however, comput-
ing the exact gradient of the log-likelihood is intractable. Therefore, we use alternate method such
as contrastive divergence (CD), to approximate the gradient of the log-likelihood.

2.2 Supervised learning of RBMs

Typically, the activations of the topmost layer of DBNs are fed into classifiers such as SVMs or soft-
max regression model to perform classifications. We have mainly described RBMs as commonly-
used building blocks of DBNs; however, recent studies address the possibility of RBMs as classifiers
themselves, not as feature extractors for other algorithms. Larochelle and Bengio [15] showed im-
pressive results by training an RBM jointly with its input data and labels. In [15], softmax regression
model is combined with the RBM, modifying the energy function and the inference rule. In our ap-
proach, the DBN is used to predict the attribute scores of the input data. In order to meet our goal, we
changed the RBM to gain the discriminative ability to output a vector prediction. The canonical way
to make a DBN discriminative is fine-tuning which slightly changes the parameters to gain better
generalization. From our perspective, the supervised learning of the RBM fits better than fine-tuning
and this will be discussed in the following sections.

3 Algorithms

Obtaining attribute scores from an input image is equivalent to modeling the procedure of human
brains, understanding semantic meaning from the visual information processed by the visual cortex.
Existing attribute-based approaches used complex combinations of low-level features and fed them
into SVMs to obtain attribute scores from the input data [4, 5, 6]. Our model is based on the DBN,
which is an appropriate model to describe the human visual cortex and automatically learns feature
representations of the input images. This property is advantageous when adopting our model to
many other applications in computer vision. Although the hyper parameters of the model might
change, it still learns the underlying structures of the input images automatically.
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Figure 1: (a) shows the graphical model of the DAN composed with multiple layers including the
attribute layer y, (b) presents our inference procedure, running mean-field approximation for n
iterations, keeping h1 fixed.

3.1 Modeling the human visual cortex

According to the neuroscience, the neurons in primary visual cortex V1, function as edge detec-
tors, and the neurons in subsequent layer V2 are likely to learn contour and corner detectors which
are combination of the edge detectors. These neurons can represent an input image into a sparse
representation which is known to be advantageous in some reasons. Features are likely to be more
separable in high-dimensional spaces, sparse constraint let the training procedure become efficient
and the classification become robust to noise [16].

3.1.1 Introducing sparsity to RBMs

In [17], it was shown that introducing sparse regularization term to the objective function encourages
the model to learn sparse representations of the input images. Sparse variant of the DBN has success-
fully learned sparse representations of the input images. Given a training set X = {x(1), . . . , x(m)},
the objective function of sparse RBMs (SRBMs) can be written as follows:

minimize
θ

−
m∑
k=1

log
∑
h

P (v(k),h(k)) +
λ

2

V∑
i=1

H∑
j=1

‖Wij ‖2 +β

H∑
j=1

(ρ− 1

m

m∑
k=1

E[h
(k)
j |v

(k)])2, (5)

where the second term is regularization of weights, ρ is the target sparsity, and β is a constant that
controls the weight of the sparse regularization term (ρ1 = 0.1, ρ2 = 0.2, and β = 2 sufficed in our
experiments).

SRBM is an appropriate method to learn edge filters that can be considered as “biologically-
inspired” representations. Stacking SRBMs forms a DBN, and contour and corner filters are learned
as the second layer bases. Furthermore, we propose deep attribute networks (DANs) to predict the
score vector of k-binary units that correspond to k attributes. Figure 1 depicts the schematic view of
our model. Given a training set X = {x(1), . . . , x(m)} and labels Y ∈ {0, 1}m, the joint probability
of the DAN is defined as follows:

P (v,h1,h2,y; θ) = P (v|h1; θ)P (h1,h2,y; θ), (6)

where θ = {W, b1, b2, U, d} is the model parameter set of the SRBM. Since the connections of the
bottom layers are directed, the first block (involving v and h1) is trained by the SRBM. The second
block (involving h1, h2, and y) is trained by discriminative SRBM (DSRBM) in a supervised
manner. The energy function of the DSRBM is given as follow:

E(h1,h2,y; θ) = −
H1∑
i=1

H2∑
j=1

h1iW
2
ijh

2
j −

H1∑
i=1

b1ih
1
i −

H2∑
j=1

b2jh
2
j −

H2∑
j=1

Y∑
k=1

h2jUjkyk −
Y∑
k=1

dkyk, (7)

where H1 and H2 are the number of units in the first hidden and the second hidden layers. Ujk is
the connection between a hidden unit h2j and an attribute unit yk, and dk is the bias term of each
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attribute unit, and the rest of the variables are same as in Equation 2. Inference is straightforward:
since there are no intra-layer connections between attribute units, conditional distributions become
independent given h2. The conditional distributions are formulated as follows:

P (h1i = 1|h2; θ) = f(

H2∑
j=1

h2jW
2
ij + b1i ), (8)

P (h2j = 1|h1,y; θ) = f(

H1∑
i=1

h1iW
2
ij +

Y∑
k=1

ykUjk + b2j ), (9)

P (yk|h2; θ) = f(

H2∑
j=1

h2jUjk + dk). (10)

In contrast to [15], we do not combine softmax regression model with the SRBM. Instead, we put
an additional attribute layer with k-binary units to output a vector prediction of the attribute scores.
A stochastic gradient descent, such as CD, is used to update the parameters as follows:

4θ = ε

(
−
〈
∂E(h1,h2,y; θ)

∂θ

〉
data

+

〈
∂E(h1,h2,y; θ)

∂θ

〉
reconstruction

)
, (11)

where θ = {W 2, b1, b2, U, d} is the model parameter set and ε is a learning rate (ε1 = 0.001 and
ε2 = 0.01 sufficed in our experiments). The minus sign and the plus sign are reversed, because the
optimization problem is minimizing the negative log-likelihood.

3.2 Prediction

Given a test image, borrowing ideas from the training procedure in deep Boltzmann machines
(DBMs), we are able to predict the attribute score vector ŷ by mean-field approximation [13]. Our
procedure is depicted in Figure 1. We fixed h1 and ran 10 iterations to obtain P (ŷ|h2). In our
approach, we used the energy of each unit in ŷ as a score value for each attribute.

4 Experiments

Two experiments on real world images are considered to evaluate the performance of the DAN.
Firstly, we conducted experiments for unconstrained face verification task on the labeled faces in the
wild (LFW) dataset [18]. We compared the verification performance between the descriptor-based
model using low-level features and attribute-based model which is the proposed model of this paper.
Secondly, we performed experiments on real-world object recognition on the a-PASCAL dataset
[6]. In object recognition, we compared the classification performance with existing attribute-based
models using SVM attribute classifiers and proposed model using DANs for attribute classification.
Many of the hyper parameter values were determined by performing tests on the validation set. The
details are described in the following subsections.

4.1 Unconstrained face verification

The LFW dataset is organized into two views: a development set consists of 2,200 training pairs and
1,000 validation pairs; randomly generated 10-fold set of 6,000 pairs to evaluate final verification
performance. We used View 1 to determine the parameters of the proposed model, and report the
mean accuracy of 10-fold cross validation results using the image restricted configuration (extra
pairs are not generated).

a-LFW: We have developed new annotations on the LFW, for exploring the attribute-based face
verification. The number of collected annotations is 36 per face image, which can be judged ob-
jectively and inferred from the appearance of the faces. The labeling task becomes ambiguous for
certain images, so that majority voting was used on 9 labels provided by 9 individuals participating
in the experiment.
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Table 1: Attribute classification accuracies of the DAN, the HOG and the LBP. AUCs are measured
for all attributes and averaged.

Method DAN HOG LBP
avg-AUC 0.86 0.82 0.84

Face representation: We detected 9 facial landmarks following the method described in [19]. Each
face image was aligned using 2-D affine transform based on the detected landmarks, and 10 patches
were generated: 9 patches were cropped by counting each facial landmark as a center point, and 1
patch was resized square image of the global face (each patch is 20×20). The generated patches
were normalized into zero-mean and unit variance, and ZCA whitening was performed to eliminate
the second-order correlations between adjacent pixels.

We also prepared two low-level descriptors to compare the face verification performance with the
high-level descriptor obtained by the DAN: LBP and HOG. For the LBP, we used 8 uniform-spaced
circular neighbor sets with radius 3 and 59-code encoding, and for the HOG, 32 bins were used for
quantization. Both features were extracted from the training set (generated patches), which were
used to train the DAN (without performing normalization and ZCA whitening). Extracted low-
level features were used as input features of SVM classifier with an RBF kernel to build attribute
classifiers. The attribute score vector extracted by SVM based attribute classifiers was input features
of the final face verification classifier which is also an SVM with the RBF kernel.

Attribute classification & face verification: Generated patches were stacked into a batch file and
were used as the input data of the first block of the DAN which is a Gaussian SRBM (GSRBM)
in order to learn edge filters (First layer bases). The number of the units in the visible layer and
in the first hidden layer was set to 400. After the first block was trained, we froze the parameters
θ1 = {W 1, b1, c}, and computed the expectations of the first hidden activations E[h1|v], given 10
patches cropped from a same face image. We concatenated the computed activations into an array,
and repeated this work for every training sample. The second block, which is a DSRBM, used the
concatenated arrays (400×10, [1, 4000]) and the ground truth labels of the attributes ([1,36]) as its
input. The number of the units of the first hidden layer and the second hidden layer were set to
4000 and 3200, respectively. Test images were processed in the same method described above, and
the attribute scores were obtained by using the method described in Section 3.2. Our final classifier
was the SVM with radial basis function (RBF) kernel trained using LIBSVM [20]. The learned first
layer bases are depicted in Figure 2.

Experimental results on attribute classification are shown in Table 1. We applied area under ROC
curve (AUC) to measure the classification accuracy of each attribute. The results show that our
method outperforms the LBP and the HOG. AUCs of attributes classified by the DAN are shown in
Table 2, and the face verification results are shown in Table 3 and the ROC curves of each method
are drawn in Figure 3. The experimental results demonstrate that the attribute-based face verification
consistently outperforms the low-level feature based face verification. Since we used less attributes
than [4], our performance is slightly lower than their work. We pose that the authors of [4] used 65
attributes while we used only 36 attributes. The reason why we did not use same attributes like as
[4] is due to the copyright problem that we couldn’t get access to the training data which were used
in the previous work. The verification performance of the ground truth labels of the attributes was
93.4± 0.97%, and the verification performance of humans was reported in [4] which is 99.2%.

4.2 Object recognition

In real-world object recognition task, we evaluate our proposed model on the a-PASCAL dataset,
which is developed for attribute-based classification.

a-PASCAL: Farhadi et al. collected 6340 training images, and 6355 test images containing 20
object classes from the PASCAL VOC 2008 challenge dateset [6]. Each image is annotated with 64
attributes. The examples of the annotated attributes are 2-D boxy, tail, wheel, side mirror, window,
shiny, etc.. We exploited 64 attributes as a descriptor to classify the objects.
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Table 2: Attribute classification accuracies of the DAN: AUCs of 36 attributes are represented.

Attribute AUC Attribute AUC Attribute AUC
Male 0.96 Gray hair 0.83 Short hair 0.76

Female 0.97 Thick eyebrows 0.81 Curly hair 0.74
Mustache 0.93 No eye-wear 0.94 Eyes slightly opened 0.74

Beard 0.94 Wearing glasses 0.96 Eyes opened 0.82
Heavy makeup 0.95 Wearing sunglasses 0.98 Closed eyes 0.81

Wearing lipsticks 0.96 Wearing a hat 0.88 Side lip wrinkles 0.87
Smiling 0.95 Small eyes 0.80 Mouth closed 0.89

Bald 0.82 Visible forehead 0.76 Athlete 0.90
Receding hairline 0.72 Old 0.88 Caucasian 0.85

All back hair 0.68 Mouth slightly opened 0.77 Asian 0.94
Blond 0.84 Mouth widely opened 0.87 African-American 0.96

Black hair 0.81 Teeth invisible 0.92 Bangs 0.82

Figure 2: A subset of the 1st layer bases learned
by GSRBM on 20×20 patches generated from the
LFW. The GSRBM has 400 units for both of the
visible layer and the hidden layer.
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Figure 3: Face verification results on the LFW
dataset.

For the fair comparison between algorithms, the developers of the dataset [6] provide bag-of word
style features which are commonly used in the object recognition task 1 and we also used these
features instead of using raw pixel values of the object images.

Attribute classification & Object recognition: The base features that we used are based on his-
togram, so that the data have sparseness; therefore, we used the SRBM to train the first block. We
simply made an array for each sample by concatenating the features (The dimension of each array
was [1, 1392]). We linearly interpolated each element into a range [0, 5], and labeled 1 if the value
was greater than 1. The dimension of the visible layer and the first hidden layer of the SRBM were
1392 and 800, respectively. The second block was trained by DSRBM taking the computed activa-
tions of the first hidden layer (800×10, [1, 8000]) and annotated attributes ([1, 64]) as its input and
the number of the second hidden layer was set to 8000 .

Table 4 shows the object recognition results. The a-PASCAL dataset is heavily biased to the “person
category” (5071 of 12695), which implies that the overall accuracy on this task is dominated by the
“person category”. Therefore, “mean per class” accuracy which represents the average classifica-

1http://vision.cs.uiuc.edu/attributes/
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Table 3: Face verification results of attribute-based verification and direct verification.
Descriptor Att-based verification Direct verification

DAN 81.73± 0.97% 71.72 ± 2.68 %
LBP 75.03± 2.88% 74.25 ± 1.3 %
HOG 78.97± 1.92% 69.95 ± 1.79 %

Kumar et al. [4] 83.62± 1.58% -

Table 4: Classification accuracies on the a-PASCAL dataset.
Method Overall Mean per class
DAN 53.7% 56.1%

Latent SVM +∆new [21] 59.1% 50.8%
Latent SVM +∆0/1 [21] 62.1% 46.2%
Semantic Att + SVM [6] 54.6% 28.4%
Base features +SVM [6] 58.5% 35.5%

tion accuracy of the entire classes (mean of classification accuracies of 20 objects) is more reliable
measure than overall accuracy. Since our model is not biased to the “person category”, we scored
56.1% on the class mean accuracy and 53.7% on the overall accuracy.

5 Conclusion

This paper is motivated by recent studies using visual attributes to solve challenging classification
tasks in computer vision. In particular, it may take a lot of efforts to label the attributes of the training
data. However, when the variety of the object classes is very large, the idea of using labeled attributes
in supervised learning seems to be much more reasonable and even if an unseen object was never
observed in the training data, we still have a chance to predict attribute information of the object.
Attribute-based method is closely related with image understanding and semantic image retrieval
system. It is common to train an attribute classifier with hand-crafted low-level features, which are
computationally expensive. We tackled this problem by introducing deep learning based attribute
classification. The proposed model DAN can automatically learn the hierarchical feature represen-
tations from the input data, reflecting the attribute information of the training set. We demonstrate
that the DAN can effectively learn attribute scores from target objects, including human faces. The
contribution of this paper is to demonstrate the potential of deep learning in attribute-based classi-
fication on unconstrained face verification and real-world object recognition tasks. To the best of
our knowledge, our work is the first attempt to apply deep learning in attribute-based classification
based on a number of human-specified attributes. Since the deep learning based approach does not
require the extraction of hand-crafted low-level features, our study holds promise for applying deep
learning to attribute-based classification. In our future work, we consider the use of convolutional
DBN which is known to be translation invariant and scalable to large images.
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